Photoinduced Phase Transitions in α-, θ-, and κ-type ET Salts: Ultrafast Melting of the Electronic Ordering

نویسنده

  • Shinichiro Iwai
چکیده

Photoinduced phase transitions in organic compounds with strong electron correlation ET [bis(ethylenedithio)-tetrathiafulvalene)-based salts α-(ET)2I3, θ-(ET)2RbZn(SCN)4, κ-(d-ET)2Cu[N(CN)2Br] were discussed based, on time resolved optical pump-probe spectroscopy using ~150 fs mid-infrared pulse, 12 fs near infrared pulse, and sub-picosecond terahertz pulse. (i) In charge-ordered insulators α-(ET)2I3 and θ-(ET)2RbZn(SCN)4, we captured ultrafast snapshots of charge dynamics i.e., immediate (ca. 15 fs) generation of a microscopic metallic state (or equivalently the microscopic melting of the charge order) which is driven by the coherent oscillation (period; 18 fs) of correlated electrons. Subsequently, condensation of the microscopic metallic state to the macroscopic scale occurs in α-(ET)2I3. However, in θ-(ET)2RbZn(SCN)4, such condensation is prevented by the large potential barrier reflecting the structural difference between the insulator and metal; (ii) In a Dimer–Mott insulator κ-(d-ET)2Cu[N(CN)2Br], photogeneration of the metallic state rises during ca. 1 ps that is much slower than the melting of charge order, because the photoinduced insulator to metal transition is driven by the intradimer molecular displacement in the dimer Mott insulator. The ultrafast dynamics of photoinduced insulator–metal transitions depend strongly on the molecular arrangement, reflecting various competing phases in the ET sheets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of Photoinduced Phase Transitions in Molecular Conductors: Interplay Between Correlated Electrons, Lattice Phonons and Molecular Vibrations

Dynamics of photoinduced phase transitions in molecular conductors are reviewed from the perspective of interplay between correlated electrons and phonons. (1) The charge-transfer complex TTF-CA shows a transition from a neutral paraelectric phase to an ionic ferroelectric phase. Lattice phonons promote this photoinduced transition by preparing short-range lattice dimerization as a precursor. M...

متن کامل

Photoinduced melting and charge order in quarter-filled organic conductors: Itinerant electron systems with competing interactions

Photoinduced charge dynamics in oneand two-dimensional organic conductors are studied theoretically in extended Peierls-Hubbard models. For quasi-one-dimensional (EDO-TTF)2PF6, photoinduced change in the charge order pattern from (0110) to (1010) is accompanied by probe-energy-dependent oscillations of conductivity. This is caused by coexistence of charge order and delocalized electrons. For qu...

متن کامل

Dynamics of photoinduced charge-density-wave to metal phase transition in K0.3MoO3.

We present the first systematic studies of the photoinduced phase transition from the ground charge density wave (CDW) state to the normal metallic state in the prototype quasi-1D CDW system K0.3MoO3. Ultrafast nonthermal CDW melting is achieved at the absorbed energy density that corresponds to the electronic energy difference between the metallic and CDW states. The results imply that on the ...

متن کامل

Ultrafast changes in lattice symmetry probed by coherent phonons.

The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. Here we show that a ti...

متن کامل

Photoinduced melting of antiferromagnetic order in La(0.5)Sr(1.5)MnO4 measured using ultrafast resonant soft x-ray diffraction.

We used ultrafast resonant soft x-ray diffraction to probe the picosecond dynamics of spin and orbital order in La(0.5)Sr(1.5)MnO(4) after photoexcitation with a femtosecond pulse of 1.5 eV radiation. Complete melting of antiferromagnetic spin order is evidenced by the disappearance of a (1/4,1/4,1/2) diffraction peak. On the other hand, the (1/4,1/4,0) diffraction peak, reflecting orbital orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012